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Noise-induced phase synchronization enhanced by dichotomic noise
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We study the nonlinear response of a stochastic bistable system driven by both a weak periodic signal and
a dichotomic noise in terms of stochastic phase synchronization. We show that the effect of noise-induced
phase synchronization can be significantly enhanced by the addition of a dichotomic noise.
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I. INTRODUCTION

One of the surprising phenomena that show the const
tive role played by noise in nonlinear systems is stocha
resonance~SR! @1#. It can be observed in the nonmonoton
dependence of the signal-to-noise ratio~SNR! and the spec-
tral power amplification~SPA! on the noise intensity. SR ha
been thoroughly investigated during the last ten years~for a
comprehensive review, see@2#!.

An effect that is closely connected with SR is the ph
nomenon of noise-induced synchronization which is o
served in the locking of the output phase to the phase of
input signal@3–5#. Two cases should be distinguished he
first, where the phase of the output follows the input ph
on the average but large fluctuations can occur, and sec
the case where, in addition to the first requirement, the fl
tuations of the input-output phase difference are very sm
The first case we call frequency locking, the second
phase locking effect. In the simplest case frequency lock
can be detected by a plateau of the mean frequency of
output switching where it attains values close to the f
quency of the input signal. For the second case~phase lock-
ing! it is possible to construct an effective diffusion coef
cient as a measure of the fluctuations of the input-out
phase difference, which in the region of frequency locki
attains small values.

We note that synchronization, being a nonlinear pheno
enon, cannot be described in terms of linear response th
~LRT! @6#. This makes an important difference between co
ventional SR and noise-induced phase synchronizat
while SR can be observed for very weak signals and can
described by LRT, noise-induced phase synchronization
quires a significant amplitude of the input@7#.

In this paper we study the generic two-state model of
@8,9# and analyze the influence of an additional dichotom
Markovian process which is uncorrelated to the periodic
put.The effect of this additional dichotomic noise on SR
the context of spectral measures was reported recentl
@10#. There, within LRT, an enhancement of both the SP
and SNR with increasing amplitude of the dichotomic no
was shown. In the following we will prove that beyond LR
an enhancement also occurs for stochastic phase synch
zation and that synchronization can be observed for sma
amplitudes of the signal in comparison with the case with
dichotomic noise.

The paper is organized as follows. In Sec. II we sketch
1063-651X/2001/64~5!/051107~7!/$20.00 64 0511
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bistable system subjected to an additional dichotomic no
In Sec. III the phase description is introduced for the abo
system driven by an external periodic signal. Simulation
sults for a harmonic input signal are presented in Sec.
whereas analytic calculations are performed in Sec. V fo
discrete periodic input signal. Conclusions are given in S
VI.

II. A BISTABLE MODEL WITH DICHOTOMIC NOISE

One of the canonical models for studying SR is the driv
overdamped bistable oscillator@2#. Here, we consider a situ
ation where this system is influenced by an additional s
chastic switching process which is independent of the d
ing input signal. Such a combination of processes can oc
in the context of different scenarios:~1! the dichotomic Mar-
kovian dynamics can be superimposed onto a periodic in
signal;~2! it can be an externally applied control@11#; or ~3!
it can be related to some internal degree of freedom. Reg
less of the specific scenario, the response of the system t
periodic signal is modified because of a modulation of
switching rates@2,4,5,12,13#. Consequently we will investi-
gate how modifications of the effective rates change the
sponse of the system to an external periodic driving.

In general, we assume the following situation. A bistab
potential with Gaussian white noise is subjected to~1! an
additive dichotomic Markovian process with zero me
which randomly modulates the potential shape, and~2! a
periodic external input signal. Both processes modify
noise-dependent time scales and give rise to SR and stoc
tic phase synchronization.

Mapping of the bistable system onto two states@9# cap-
tures those features of the continuous system that are es
tial for SR. The two-state model which after inclusion of th
dichotomic Markovian noise yields a four-state model
sketched in Fig. 1.

The left and right states correspond to positions in the
and right wells which, in the absence of the dichotomic M
kovian noise (B50), are separated by a barrier of heig
DU. Thermal noise will induce stochastic transitions b
tween the two wells of the bistable potential. In the limit
small noise intensity, which meansD!DU, the rate of es-
cape from one of the two symmetric wells is given b
a(D)5a0exp(2DU/D) @14#. Throughout the article we fix
dimensionlessDU50.25. The prefactora0 sets an upper
bound on the noise-dependent rates. Since no other pro
©2001 The American Physical Society07-1
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should be faster, all other rates occurring in our setup hav
be ~much! smaller. By proper rescaling of time we can a
ways seta051.

In the following, byg we denote the switching rate of th
dichotomic noise. ForB.0 this process modifies the trans
tion rates of the stochastic two-state dynamics: the single
of escape from one of the two symmetric wells splits in
two values

a15expS 2
DU1B

D D , a25expS 2
DU2B

D D . ~1!

By B,DU we denote the amplitude of the dichotomic noi
while its instantaneous value is written asl(t)P$21,1%.
The two states of the output of the bistable dynamics
labeled bys(t)P$21,1%. With these definitions the time
dependent modified rates can be expressed by

W0~s,l!5expS 2
DU1slB

D D
5

1

2
@~a11a2!2sl~a22a1!#. ~2!

In the following, letp(s,l) be the probability of the instan
taneous configuration (s,l). The master equation for th
stochastic dynamics reads

d

dt
p~s,l!5W0~2s,l!p~2s,l!2W0~s,l!p~s,l!

1g@p~s,2l!2p~s,l!#. ~3!

This master equation was used in@4,5# to obtain the cross-
correlation function between the output and the dichotom
noise^sl&. In the asymptotic limit this correlator exhibits
nonmonotonic dependence on the thermal noise intensitD.
Thus, it evidences maximal correlations between the ou
and the dichotomic noise for an optimal value of noise
tensityD—the distinguishing feature of SR.

III. PHASE DESCRIPTION OF THE BASIC MODEL

In the present paper the evolution of the system prese
above will be considered in terms of stochastic phase dyn
ics. To introduce a phase description for the model addres
in the previous section additionally driven by a periodic

FIG. 1. The basic four-state model.
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put signal, we have to define three different phases: one
the outputfs , one for the dichotomic noisefl , and one for
the input signalfd .

Let us assume that the output switching events occu
times tk with k50,1,2, . . . . Then, for this point process, th
instantaneous phase of the outputfs(t) can be defined as

fs~ t !5p(
k

u~ t2tk!. ~4!

As a result, switching events are accompanied by accumu
ing jumps of the phase, i.e., each time the system switc
between the left and the right state the phase changes bp.
Obviously, this leads to

cos@fs~ t !#5s~ t !. ~5!

Using an analogous definition for the dichotomic noisel(t)
yields

fl~ t !5p(
j

u~ t2t j !, cos@fl~ t !#5l~ t !, ~6!

where t j are now the switching times of the dichotom
noise.

Two kinds of input signal will be considered:~1! The first
is a harmonic continuous signald(t)5A cos(Vt2u0) with
instantaneous phasefd(t)5Vt2u0; this will be used in our
numerical simulation.~2! The second is a periodic discre
input d(t)5sgn@cos(Vt2u0)# with an instantaneous phas
given by

fd~ t !5p(
n

u~ t2tn!, cos@fd~ t !#5d~ t ! ~7!

with deterministic switching timestn5(np1u0)/V. Our
analytic approach will be based on this discrete variant.

Since we aim at a description of the effective phase s
chronization we focus our attention on the instantane
phase difference between the output and the periodic inp

w5fs2fd . ~8!

The time derivative of its average gives the difference
tween the mean frequencies of the output and the in
jumps,

^v&5
d

dt
^w&5^vs&2^vd&. ~9!

Here ^vs& is the mean frequency of the output switchin
and in the following will be called the mean switching fre
quency~MSF!. In general, the quantities occurring in Eq.~9!
are time dependent for two reasons. The periodic input in
duces a nonstationary~sometimes called cyclostationary! as-
pect, which, however, can be absorbed by initial phase a
aging; we will come back to this point later. Secondly, a
aside from the periodic driving, the system has to relax
some asymptotic stationary value. This aspect was first
dressed in detail in@5# and again will show up in kinetic
7-2
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NOISE-INDUCED PHASE SYNCHRONIZATION . . . PHYSICAL REVIEW E64 051107
equations for the correlators@cf. Eqs.~16! and ~17! below#.
In the following we will always focus on asymptotic statio
ary quantities measured after phase averaging and after
evant relaxation times have passed.

Let us first repeat the general conditions for forced s
chronization. The synchronization of an output with an inp
reveals itself by two effects: frequency and phase locki
The first effect generally means that the ratio of the me
switching frequency of the output and the mean input f
quency forms a rational number, i.e.,

^vs&

^vd&
5

m

n
. ~10!

In the following, we will always restrict our analysis to th
casem5n51 and constant input frequency^vd&5V and
calculate the output MSF in the presence of both process
the input signal and the dichotomic noise. The MSF w
measure how the dichotomic noise alters the frequency
chronization between the output and the input signals.

Additionally, we look for phase locking which, in the cas
m5n51 and without noise, imposes the following co
straint on the phase difference:

uwu,const, ~11!

which is valid for all times. In the presence of noise con
tion ~11! does not hold true rigorously. However, under a
propriate conditions~sufficiently small or optimal noise! for
a long periodt the phase differencew varies only slightly,
i.e.,

uw~ t !2w~ t0!u!O~p! for t0,t,t01t; ~12!

the system experiences a locking episode of durationt.
Locking episodes are interrupted by rare fluctuations wh
cause a phase slip, i.e., the phase differencew changes by an
order of p, after which another locking episode starts.
cases when̂t& is large compared to the period of the exte
nal force one may speak about effective phase locking.

Frequency locking without phase locking can occur sin
it is possible to obeŷv&'0 and still experience large phas
difference fluctuations—where it varies not by drift but b
diffusion. The converse is not true, i.e., effective phase lo
ing always implies frequency locking since it requires bo
vanishing diffusion and vanishing drift. This reveals th
generally phase locking is a stronger effect than freque
locking. In @4,5# the regions of frequency and phase locki
roughly coincided.

The motion of the phase differencew is quantified by a
related effective diffusion coefficient

Deff5
1

2

d

dt
Š~w2^w&!2

‹5
1

2

d

dt
~^w2&2^w&2! ~13!

which in the asymptotic limitt→` approaches a constant
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IV. SIMULATION RESULTS

To support the arguments to be used in our analytic
proach we first present the results of numerical simulatio
The averages defining 1:1 frequency~10! and phase~13!
locking were computed using ensembles of trajectories. E
single realization was computed in a standard fashion
ploying instantaneous transition rates~see, e.g.,@9#, Sec. IV!.
The harmonic input signal was weak, i.e.,A50.03!B
50.215, and slow,V50.001!g50.1 ~with g being the
switching rate of the dichotomic Markovian process!. The
time step was chosen asDt51022 s and the simulation time
was 53106Dt. For each selected noise intensityD100 real-
izations were combined, thus forming the ensemble.

Our results are shown in Fig. 2. As indicated by the fi
plateau for small noise intensities the MSF of the outpu
locked to the frequency of the periodic input signalV. In the
same region ofD the diffusion coefficient possesses a min
mum. Both effects together evidence effective phase lock
It is the very region of noise intensity where the SPA for t
two-state system with dichotomic noise achieves the fi
strong maximum@10#. We underline that, contrary to th
case without dichotomic noise, this effective phase synch
nization already occurs for rather small input amplitudesA.
A second plateau occurs for higher noise intensities aro
the frequency of the dichotomic noisepg without being ac-
companied by a decrease ofDeff . The latter effect is a mere
consequence of the fact that the effective diffusion coe
cient is defined with respect to the phase differencew5fs
2fd .

V. ANALYTIC APPROACH

An analytic approach to the synchronization effect is fe
sible in the case of a dichotomic periodic input. L

FIG. 2. Ensemble simulation of the bistable system with a h
monic input signal (A50.03 andV50.001) and with a dichotomic
process (B50.215 andg50.1). Mean output switching frequenc
^vs& ~a! and effective diffusion coefficientDeff ~b!.
7-3
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p(s,l,d) denote the probability of observing the outputs,
the state of the dichotomic noisel, and the inputd at time t
~conditioned by some initial configuration at timet0). Then
the master equation reads

d

dt
p~s,l,d!5W~2s,l,d!p~2s,l,d!

2W~s,l,d!p~s,l,d!1g@p~s,2l,d!

2p~s,l,d!#1 (
n50

`

dS t2
np1u0

V D
3@p~s,l,2d!2p~s,l,d!# ~14!

whereW(s,l,d) is given by the formula

W~s,l,d!5W0~s,l!expS 2
A

D
sdD

5
1

2
@~a11a2!2sl~a22a1!#

3FcoshS A

D D2sd sinhS A

D D G . ~15!

For the dichotomic periodic input no linearization wi
respect to the amplitude of the signal has to be perform
This allows for calculations beyond the regime of LRT, i.
for any value of the signal amplitudeA,DU2B ~subthresh-
old condition!.

The classical description of SR in the case of discr
input signal is based on the cross-correlation functions
tween output and input signals,^sd&. The kinetic equations
for this function as well as for the cross correlator^sl&
between output and dichotomic noise can be obtained
rectly from the master equation~14!:

d

dt
^sl&52F2g1~a11a2!coshS A

D D G
3^sl&2~a22a1!

3sinhS A

D D ^sd&1~a22a1!coshS A

D D , ~16!

d

dt
^sd&52F2

V

p
1~a11a2!coshS A

D D G
3^sd&2~a22a1!

3sinhS A

D D ^sl&1~a21a1!sinhS A

D D . ~17!

Let us denote the time independent stationary values
the superscripts. Both of the functionŝ sd&s and ^sl&s

reveal a nonmonotonic dependence on the thermal nois
tensity D which is the distinguishing feature of stochas
resonance~see panel~b! of Fig. 3!. The behavior of the cros
correlator^sd&s is qualitatively the same as the behavior
the SPA discussed in@10#.
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A. Frequency locking

To describe the frequency locking effect analytically t
MSF in the presence of both dichotomic noise and the ex
nal periodic signal has to be calculated. The rates~15! re-
written in the phase description introduced in Sec. III rea

W~fs ,fl ,fd!5a~D !expS 2
B

D
cos~fs2fl! D

3expS 2
A

D
cos~fs2fd! D . ~18!

The master equation for the evolution ofp(fs ,fl ,fd) is
achieved by reformulating Eq.~14! employing the rates~18!,
which yields

d

dt
p~fs ,fl ,fd!

5~Fs21!W~fs ,fl ,fd!p~fs ,fl ,fd!

1g~Fl21!p~fs ,fl ,fd!

1 (
n50

1`

dS t2
np1u0

V D ~Fd21!p~fs ,fl ,fd!

~19!

where Fs f (fs ,fl ,fd)5 f (fs2p,fl ,fd) and analogous
definitions apply toFl andFs .

In Eq. ~19! two dichotomic processes enter: the period
input signal and the Markovian dichotomic noise. The diffe

FIG. 3. Output MSF~a! as a function ofD for variousB, 0 ~long
dashed!, 0.2 ~dashed!, 0.215 ~solid!, in comparison with the cross
correlators~b! ^sd&s ~solid! and^sl&s ~dashed! for B50.2. Other
parameters:V50.001,A50.03, g50.1.
7-4
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ence between them lies in the growth of an ensemble rel
initial variance: for the periodic signal an ensemble prepa
with identical initial phaseu0 will switch uniformly at times
tn5(np1u0)V21; hence, even ensemble averages cha
discontinuously and the zero initial variance never grow
This is different for the dichotomic Markovian noise whe
jumps occur at different random moments. Hence, ensem
averages are continuous functions of time and even a van
ing initial variance will grow as time elapses. A differenc
can also be seen in the transition rate which, in the cas
the periodic signal, is time dependent and which is the ti
independent rateg for the Markovian dynamics.

To remove the nonstationary~cyclostationary! aspect
from ensemble averages one can perform an additional a
age over the initial phase using the assumption of a unifo
distribution, i.e.,P(u0)51/2p.

From Eq. ~19! the evolution equation for the averag
phase difference is obtained, which, after averaging over
initial phaseu0 of the input, reads

d

dt
^w&5p^W~fs ,fl ,fd!&2V. ~20!

By definition we identify the MSF of the output calculate
with both the dichotomic noise and the periodic input sig
as

^vs&5p^W~fs ,fl ,fd!&. ~21!

The cross-correlation functions between output and in
signal and output and dichotomic noise are redefined in
phase description aŝsd&5^cosw& and ^sl&5^cos(fs

2fl)&. This can be checked easily using trigonometric ide
tities as well as definitions from Sec. III. The MSF express
as a function of these cross correlators reads

2

p
^vs&s5~a11a2!coshS A

D D2~a22a1!^cos~fs2fl!&s

3coshS A

D D2~a11a2!^cosw&ssinhS A

D D . ~22!

Here, we also use the fact that the input signal and the
chotomic noise are uncorrelated^cos(fl2fd)&

s50. Note that
a plateau of the stationary MSF can occur only when eit
of the two stationary correlators gains sufficient weight, b
^cosw&s giving rise to a plateau at low noise intensities,
^cos(fs2fl)&

s which slows down the growth of the MSF a
larger noise intensities.

The result of our analytic treatment is visualized in Fig.
In panel ~a!, the output MSF is presented for a weak a
slow signal (A50.03,V50.001) and a fast dichotomic nois
(g50.1) and for three different amplitudesB. For suffi-
ciently largeB two distinct regions of synchronization can b
seen. The plateau occurring for small noise intensities co
sponds to a region where the MSF is locked to the freque
V of the periodic input. Due to our definition of the phasew
it corresponds to the regime of noise-induced frequency s
chronization. As can be seen from panel~b! this locking
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region is closely connected to the broad flat peak of
input-output cross correlator which, forB50.2, attains a
value near unity.

We want to emphasize that the addition of a fast swit
ing dichotomic noise effects the emergence of a locking
gime which is never found for the bistable dynamics driv
by a weak periodic input signal alone. Previous investig
tions @5# ~corresponding toB50) have shown this kind of
forced synchronization only for rather large amplitudesA.
Hence, the addition of a dichotomic noise, realized in pr
tice, for example, through an external driving, should im
prove the coherence between the response and the per
input even for rather small amplitudes of the input signal

In Fig. 4 we present Arnold-like tongues calculated f
different values of the amplitude of the dichotomic noiseB.
As is seen, with increasing amplitudeB the amplitudeA
necessary to obtain a plateau of^vs& is significantly low-
ered. This clearly illustrates the synchronization enhanc
role of the additional dichotomic noise. With increasingB
optimal noise shifts to smaller values and the minimalA
necessary for frequency synchronization decreases rap
~note the logarithmic scale in Fig. 4!.

More insight into the beneficial role of dichotomic nois
is gained by inspection of Fig. 5. Here, we compare
output MSF with the mean frequency of a periodically driv

FIG. 4. Arnold-like tongues calculated forV50.001 andg
50.1, and four values ofB50 ~solid!, 0.1 ~dotted!, 0.2 ~dashed!,
and 0.215~long dashed!.

FIG. 5. Comparison of the output MSF forg50.1,B50.2
~solid! with a periodically driven two-state system with effectiv
barrier DUeff50.05 ~dashed!. Other parameters:A50.03, V
50.001.
7-5
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two-state system@9# with an effective barrierDUeff5DU
2B50.05.DUeff is nothing but the barrier related to the ra
a2 which, for largeg, is the dominating time scale for tran
sitions to the input effected lower state. From the plot it c
be seen that the behavior of the system with fast switch
dichotomic noise, i.e.,g@V, of large amplitude, i.e.,B
;DU, is effectively equivalent to a periodically driven two
state system with reduced barrier heightDUeff5DU2B.
Note that a weak signalA!DU ~LRT regime! in the absence
of dichotomic noise can, for sufficiently largeB, change its
character to a strong signal, sinceA'DUeff , in the presence
of dichotomic noise.

For largerD a second locking region can be observed.
this region^vs&s is synchronized with the dichotomic nois
which is shown by the plateau around the valuepg. This
locking is accompanied by a peak of the cross-correla
function ^sl&s. Hence, in this region the output closely fo
lows the dichotomic noise. The second locking region is l
pronounced than the first one.

As shown in Fig. 6, forpg approachingV ~from above!
the two locking plateaus converge. When both frequenc
match it is not clear in advance which signal the syst
should follow. Generally, one can state that for coincidi
mean frequencies of the dichotomic noisepg and the peri-
odic input V the system will be locked to the process wi
larger amplitude. Forpg!V the system again follows th
slower signal~see the dot-dashed line in Fig. 6!.

B. Phase locking

As stated above, the effect of frequency locking char
terizes synchronization at the level ofaveragemotion of the
input and output phases. It does not necessarily restrict fl
tuations of the phase difference to small values.

Consequently, here we address the question whether
quency locking, detected in the system under considera
is also accompanied by an effective phase locking. The m
sure we use to trace phase locking is the effective diffus
coefficientDeff for the phase differencew already defined in
Eq. ~13!. Three terms contribute to its general structure

Deff5Dd1Ds2Dcorr ~23!

with Dd being the diffusion coefficient of the input andDs

FIG. 6. Output MSF as a function ofD for B50.2 and four
values ofg50.1 ~solid!, 0.01 ~dashed!, 0.001 ~long dashed!, and
0.0001~dot dashed!. Other parameters:V50.001 andA50.03.
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of the output. Cross correlations quantified byDcorr
5d/dt(^fdfs&2^fd&^fs&) can decrease the effective di
fusion coefficient. Since the deterministic periodic dynam
preserves any initial varianceDd vanishes.

The effective diffusion coefficient can be rewritten as

Deff5
p

2
^vs&1p@^wW~fs ,fl ,fd!&2^w&

3^W~fs ,fl ,fd!&#. ~24!

Here, the dichotomic noise is hidden in the modified ra
W(fs ,fn ,fd) given by Eq.~15!. By insertion of Eq.~15!
into Eq. ~24! one obtains

2

p
Deff5^vs&2~a11a2!sinhS A

D Du12~a21a1!

3coshS A

D Du21~a22a1!sinhS A

D Du3 , ~25!

where we have used the abbreviations

u15^~w2^w&!cos~fs2fd!&,

u25^~w2^w&!cos~fs2fl!&,

u35^~w2^w&!cos~fl2fd!&. ~26!

Starting from the master equation~19!, one has to derive
equations foru1 , u2, and u3. This is a cumbersome bu
straightforward procedure which, after insertion
asymptotic stationary values, yields an explicit analytic e
pression for the effective diffusion coefficient.

In Fig. 7 the result is plotted forg50.1, V50.001, and
different amplitudes of the local dichotomic process. T
solid line corresponds to the same parameters that were
for the numerical simulation@see Fig. 2~b!#. By visual in-
spection the similarity is obvious. In the region of nois
induced frequency locking the diffusion coefficient also
tains a minimum. Hence, frequency locking is accompan
by effective phase locking. In contrast, the second platea
the output MSF at larger noise intensity is not shadowed
a second minimum of the diffusion coefficient. This, how

FIG. 7. Deff for B50 ~long dashed!, B50.2 ~dashed!, and B
50.215~solid! of the dichotomic noise.
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ever, is explained by the fact that we have definedw5fs

2fd andDeff is not symmetric with respect to exchangin
the roles of the periodic signal and dichotomic noise.

VI. SUMMARY AND CONCLUSIONS

We have investigated a periodically driven bistable s
tem subjected to an additional dichotomic noise. An e
hancement of noise-induced phase synchronization betw
the output and a slow butweak periodic input signal with
increasing amplitude of the fast switching dichotomic no
was proved.

In general, we conclude that, for a slow and weak perio
input signal, by tuning the amplitude and rate of dichotom
l-

ys

o
,

.

ier

.

nd

ro

05110
-
-
en

e

c
c

noise we can control—enhance or suppress—the respon
the system to the input. Optimal response is achieved for
switching dichotomic noise with sufficiently large amplitud
This is obvious since in this case the dichotomic noise eff
tively reduces the original barrierDU by the amplitudeB
and changes a small amplitude signal~LRT! into a large
amplitude signal~beyond LRT!.
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