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Noise-induced phase synchronization enhanced by dichotomic noise

Robert Rozenfeld,Jan A. Freund,Alexander Neimar,and Lutz Schimansky-Geter
Ynstitut fir Physik, Humboldt-Universitazu Berlin, D-10115 Berlin, Germany
2Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121
(Received 25 January 2001; published 18 October 001

We study the nonlinear response of a stochastic bistable system driven by both a weak periodic signal and
a dichotomic noise in terms of stochastic phase synchronization. We show that the effect of noise-induced
phase synchronization can be significantly enhanced by the addition of a dichotomic noise.
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I. INTRODUCTION bistable system subjected to an additional dichotomic noise.
In Sec. lll the phase description is introduced for the above
One of the surprising phenomena that show the construcsystem driven by an external periodic signal. Simulation re-
tive role played by noise in nonlinear systems is stochastisults for a harmonic input signal are presented in Sec. IV
resonancéSR) [1]. It can be observed in the nonmonotonic Whereas analytic calculations are performed in Sec. V for a
dependence of the signal-to-noise r&®&NR) and the spec- discrete periodic input signal. Conclusions are given in Sec.
tral power amplificatiofSPA) on the noise intensity. SR has V
been thoroughly investigated during the last ten yéfmsa
comprehensive review, s¢2]). , _ IIl. A BISTABLE MODEL WITH DICHOTOMIC NOISE
An effect that is closely connected with SR is the phe-
nomenon of noise-induced synchronization which is ob- One of the canonical models for studying SR is the driven
served in the locking of the output phase to the phase of theverdamped bistable oscillati?]. Here, we consider a situ-
input signal[3—5]. Two cases should be distinguished here:ation where this system is influenced by an additional sto-
first, where the phase of the output follows the input phasehastic switching process which is independent of the driv-
on the average but large fluctuations can occur, and seconifhg input signal. Such a combination of processes can occur
the case where, in addition to the first requirement, the flucin the context of different scenariog) the dichotomic Mar-
tuations of the input-output phase difference are very smallkovian dynamics can be superimposed onto a periodic input
The first case we call frequency locking, the second thesignal;(2) it can be an externally applied contidl1]; or (3)
phase locking effect. In the simplest case frequency lockingt can be related to some internal degree of freedom. Regard-
can be detected by a plateau of the mean frequency of thiess of the specific scenario, the response of the system to the
output switching where it attains values close to the freJeriodic signal is modified because of a modulation of the
quency of the input signal. For the second cgsease lock- switching rateg2,4,5,12,1% Consequently we will investi-
ing) it is possible to construct an effective diffusion coeffi- gate how modifications of the effective rates change the re-
cient as a measure of the fluctuations of the input-outpusponse of the system to an external periodic driving.
phase difference, which in the region of frequency locking In general, we assume the following situation. A bistable
attains small values. potential with Gaussian white noise is subjected(1p an
We note that synchronization, being a nonlinear phenomadditive dichotomic Markovian process with zero mean
enon, cannot be described in terms of linear response theowhich randomly modulates the potential shape, &&da
(LRT) [6]. This makes an important difference between coneriodic external input signal. Both processes modify the
ventional SR and noise-induced phase synchronizatiornoise-dependent time scales and give rise to SR and stochas-
while SR can be observed for very weak signals and can b#c phase synchronization.
described by LRT, noise-induced phase synchronization re- Mapping of the bistable system onto two staf@$ cap-
quires a significant amplitude of the inptA]. tures those features of the continuous system that are essen-
In this paper we study the generic two-state model of SRial for SR. The two-state model which after inclusion of the
[8,9] and analyze the influence of an additional dichotomicdichotomic Markovian noise yields a four-state model is
Markovian process which is uncorrelated to the periodic in-sketched in Fig. 1.
put.The effect of this additional dichotomic noise on SR in  The left and right states correspond to positions in the left
the context of spectral measures was reported recently iand right wells which, in the absence of the dichotomic Mar-
[10]. There, within LRT, an enhancement of both the SPAkovian noise B=0), are separated by a barrier of height
and SNR with increasing amplitude of the dichotomic noiseAU. Thermal noise will induce stochastic transitions be-
was shown. In the following we will prove that beyond LRT tween the two wells of the bistable potential. In the limit of
an enhancement also occurs for stochastic phase synchrosimall noise intensity, which meai¥<AU, the rate of es-
zation and that synchronization can be observed for smallezape from one of the two symmetric wells is given by
amplitudes of the signal in comparison with the case withoui(D)=aqsexp(—AU/D) [14]. Throughout the article we fix
dichotomic noise. dimensionlessAU=0.25. The prefactoila, sets an upper
The paper is organized as follows. In Sec. Il we sketch thddound on the noise-dependent rates. Since no other process
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(o,A) (-L+1) exp[-AU-B)D] (+1,+1) put signal, we have to define three different phases: one for
o the outpute,, one for the dichotomic noisé, , and one for
exp[-(A U+B)/D] the input signalkpy .
Let us assume that the output switching events occur at
¥ Y timest, with k=0,1,2 . ... Then, for this point process, the
instantaneous phase of the outpyf(t) can be defined as
exp[-(A U+B)/D] _ _
® ° Po()=m2 O(t=1y). 4

(-1,-1) exp[-AU-B)YD] (+L,-1)
) As a result, switching events are accompanied by accumulat-
FIG. 1. The basic four-state model. ing jumps of the phase, i.e., each time the system switches

o between the left and the right state the phase changes by
should be faster, all other rates occurring in our setup have tgpyjously, this leads to

be (much smaller. By proper rescaling of time we can al-

ways setay=1. cog ¢, (t)]=o(t). 5)
In the following, byy we denote the switching rate of the

dichotomic noise. FoB>0 this process modifies the transi- Using an analogous definition for the dichotomic noig¢)

tion rates of the stochastic two-state dynamics: the single ratdelds

of escape from one of the two symmetric wells splits into

two values HO=72 o(t=t), o§HBIND,  ©
AU+B AU-B
Qq=exXp - |, &@Tep T | @ wheret; are now the switching times of the dichotomic
noise.
By B<AU we denote the amplitude of the dichotomic noise ~ Two kinds of input signal will be consideredt) The first
while its instantaneous value is written agt)e{—1,1}. is @ harmonic continuous signal(t)=A cos(t—6) with

The two states of the output of the bistable dynamics arénstantaneous phasgg(t)=Qt— 6o; this will be used in our
labeled byo(t)e{—1,1}. With these definitions the time numerical simulation(2) The second is a periodic discrete

dependent modified rates can be expressed by input d(t) = sgricos(t—6)] with an instantaneous phase
given by
AU+ o\B
V\/O(o,)\):exp( - T)
da(h=m2 0(t-t,), cogp()]=d(t)  (7)
:E[(al+a2)_‘7)‘(a2_al)]' @ with deterministic switching times,=(nm+ 6,)/Q. Our
analytic approach will be based on this discrete variant.
In the following, letp(o,\) be the probability of the instan- Since we aim at a description of the effective phase syn-
taneous configurationo(,\). The master equation for the chronization we focus our attention on the instantaneous
stochastic dynamics reads phase difference between the output and the periodic input,
d ¢=¢;=¢q. 8
GiP(e M) =W(= o M)p(=a,}) =W, \)p(a,))
The time derivative of its average gives the difference be-
+9[p(a,—\)—p(a,\)]. (3) tween the mean frequencies of the output and the input
jumps,

This master equation was used[#5] to obtain the cross-

correlation function between the output and the dichotomic <w>zﬂ<(p>:<w )~ (wq) 9)
noise{o\). In the asymptotic limit this correlator exhibits a dt 7 a

nonmonotonic dependence on the thermal noise intebsity

Thus, it evidences maximal correlations between the outputiere (w,) is the mean frequency of the output switchings
and the dichotomic noise for an optimal value of noise in-and in the following will be called the mean switching fre-

tensity D—the distinguishing feature of SR. quency(MSF). In general, the quantities occurring in £§)
are time dependent for two reasons. The periodic input intro-
IIl. PHASE DESCRIPTION OF THE BASIC MODEL duces a nonstationafgometimes called cyclostationargs-

pect, which, however, can be absorbed by initial phase aver-
In the present paper the evolution of the system presenteaging; we will come back to this point later. Secondly, and
above will be considered in terms of stochastic phase dynanaside from the periodic driving, the system has to relax to
ics. To introduce a phase description for the model addressesbme asymptotic stationary value. This aspect was first ad-
in the previous section additionally driven by a periodic in-dressed in detail if5] and again will show up in kinetic
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equations for the correlatofsf. Egs.(16) and (17) below].

In the following we will always focus on asymptotic station-
ary quantities measured after phase averaging and after rel-
evant relaxation times have passed.

Let us first repeat the general conditions for forced syn-
chronization. The synchronization of an output with an input
reveals itself by two effects: frequency and phase locking.
The first effect generally means that the ratio of the mean
switching frequency of the output and the mean input fre-
guency forms a rational number, i.e.,

(a)

<w_>

(@) _

(wg) ®

m
o (10

In the following, we will always restrict our analysis to the
casem=n=1 and constant input frequengyy)=Q and
calculate the output MSF in the presence of both processes—
the input signal and the dichotomic noise. The MSF will
measure how the dichotomic noise alters the frequency syn-
chronization between the output and the input signals.

Additionally, we look for phase locking which, in the case
m=n=1 and without noise, imposes the following con-
straint on the phase difference:

RO,

St

-2 -1

10
D

10

FIG. 2. Ensemble simulation of the bistable system with a har-
monic input signal A=0.03 and()=0.001) and with a dichotomic
process B=0.215 andy=0.1). Mean output switching frequency

(w,) (a) and effective diffusion coefficierDg (b).

|¢| <const, 11

IV. SIMULATION RESULTS
which is valid for all times. In the presence of noise condi-
tion (11) does not hold true rigorously. However, under ap—pr
propriate conditiongsufficiently small or optimal noigefor
a long periodr the phase difference varies only slightly,
ie.,

To support the arguments to be used in our analytic ap-
oach we first present the results of numerical simulations.
The averages defining 1:1 frequenty0) and phasg13)
locking were computed using ensembles of trajectories. Each
single realization was computed in a standard fashion em-
ploying instantaneous transition raiege, e.9.,9], Sec. I\.

The harmonic input signal was weak, i.eA=0.03<B
=0.215, and slow,Q2=0.001<y=0.1 (with y being the
switching rate of the dichotomic Markovian procgshe
time step was chosen &¢=10 2 s and the simulation time
Rvas 5x 1°At. For each selected noise intensiiy 00 real-

12

lo(t)—@(tg)|<O(m) for to<t<ty+m;

the system experiences a locking episode of duration
Locking episodes are interrupted by rare fluctuations whic

cause a phase slip, i.e., the phase differenchanges by an
order of 7r, after which another locking episode starts. In
cases whekir) is large compared to the period of the exter-
nal force one may speak about effective phase locking.

izations were combined, thus forming the ensemble.

Our results are shown in Fig. 2. As indicated by the first
plateau for small noise intensities the MSF of the output is
locked to the frequency of the periodic input sigfklin the

Frequency locking without phase locking can occur sincesame region oD the diffusion coefficient possesses a mini-
it is possible to obeyw)~0 and still experience large phase mum. Both effects together evidence effective phase locking.
difference fluctuations—where it varies not by drift but by It is the very region of noise intensity where the SPA for the
diffusion. The converse is not true, i.e., effective phase lockiwo-state system with dichotomic noise achieves the first
ing always implies frequency locking since it requires bothstrong maximum[10]. We underline that, contrary to the
vanishing diffusion and vanishing drift. This reveals thatcase without dichotomic noise, this effective phase synchro-
generally phase locking is a stronger effect than frequencfization already occurs for rather small input amplitudes
locking. In[4,5] the regions of frequency and phase locking”A second plateau occurs for higher noise intensities around
roughly coincided. the frequency of the dichotomic noisey without being ac-

The motion of the phase differenceis quantified by a companied by a decrease Df;;. The latter effect is a mere
related effective diffusion coefficient consequence of the fact that the effective diffusion coeffi-

cient is defined with respect to the phase differepced,,
1d -

1d
Deii=5 qiéle=(e)?)=5 D) —(e)®) (13 V. ANALYTIC APPROACH

An analytic approach to the synchronization effect is fea-

which in the asymptotic limit—oc approaches a constant. sible in the case of a dichotomic periodic input. Let
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p(o,\,d) denote the probability of observing the output
the state of the dichotomic noide and the inpud at timet
(conditioned by some initial configuration at tinhg). Then
the master equation reads .
<@ >
d
&p(a,)\,d)=W(—0',)\,d)p(—0',)\,d)
—W(o,\,d)p(o,\,d)+ y[p(o,—\,d)
- nm+ 6
—plon,d)]+ > 8(t— T D
n=0 Q o
10
X[p(o,\,—d)=p(o,\,d)] (14) (b)
whereW(o,\,d) is given by the formula 10"
<od>'
A A
W(a,x,d)zvvo(a,x)exp(—aad) |
1
:E[(a1+a2)_0)\(a2_al)] 107 e

X (15

A A
COS"(B) —od Smr(ﬁ) ' FIG. 3. Output MSKa) as a function oD for variousB, 0 (long
dasheg, 0.2 (dasheg, 0.215(solid), in comparison with the cross
For the dichotomic periodic input no linearization with correlators(b) {od)® (solid) and{o\)® (dashedl for B=0.2. Other
respect to the amplitude of the signal has to be performecharameters()=0.001,A=0.03, y=0.1.
This allows for calculations beyond the regime of LRT, i.e.,
for any value of the signal amplitude<AU — B (subthresh- A. Frequency locking

old conditio. o _ _ To describe the frequency locking effect analytically the
~ The classical description of SR in the case of discretqsk in the presence of both dichotomic noise and the exter-
input signal is based on the cross-correlation functions beng| periodic signal has to be calculated. The rdtes re-

tween output and input signal§yd). The kinetic equations \yritten in the phase description introduced in Sec. Ill read
for this function as well as for the cross correlater\)

between output and dichotomic noise can be obtained di- B
rectly from the master equatiqi4): W(o, by, pg)=a(D)exp — Do ¢, é\)
d A A
a(a)\)z— 2y+(a;+ay)cos D X ex —Bcos(qbg— q’)d)). (18

X{oN) = (a—ay) The master equation for the evolution p, ,d, ,dq) is

A A achieved by reformulating Eq14) employing the rate&l8),
><sinr<5>(ad>+(a2—a1)cos}‘(5), (16)  which yields

d
%(od)=—[2%+(a1+a2)cosl’{g” atP(¢oér o)
=(Fe=DW(¢s,hx,ba)P(do, & s da)
+ y(F)\_l)p(QSong)\ 7¢d)

X(od)—(a,—ay)

. (17

inH 2} (on)+ (ap+ay)sinH 2
X sin 5(0} (ay+ay)sin ) N+ 6,

+E 5(t_ Q )(Fd_l)p(¢ai¢xv¢d)
n=0

Let us denote the time independent stationary values by
the superscrips. Both of the functions(od)® and (o\)® (19
reveal a nonmonotonic dependence on the thermal noise in-
tensity D which is the distinguishing feature of stochastic where F _f( ¢, ,®) ,dq)=T(d,— 7, b\ ,¢q) and analogous
resonancésee panefb) of Fig. 3). The behavior of the cross definitions apply ta=, andF,,.
correlator(od)® is qualitatively the same as the behavior of In Eqg. (19) two dichotomic processes enter: the periodic
the SPA discussed ifl0]. input signal and the Markovian dichotomic noise. The differ-
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ence between them lies in the growth of an ensemble related
initial variance: for the periodic signal an ensemble prepared o
with identical initial phased, will switch uniformly at times |
}

t,=(n7+ 6,)Q L hence, even ensemble averages change 10
discontinuously and the zero initial variance never grows.
This is different for the dichotomic Markovian noise where ~ °° == .
jumps occur at different random moments. Hence, ensemble - s/
averages are continuous functions of time and even a vanish- N
ing initial variance will grow as time elapses. A difference
can also be seen in the transition rate which, in the case of
the periodic signal, is time dependent and which is the time 10
independent rater for the Markovian dynamics. D
To remove the nonstationarycyclostationary aspect
from ensemble averages one can perform an additional aver- FIG. 4. Arnold-like tongues calculated fd2=0.001 andy
age over the initial phase using the assumption of a uniform¥0.1, and four values oB=0 (solid), 0.1 (dotted, 0.2 (dashed]
distribution, i.e.,P(60,) =1/27. and 0.215(long dashen
From Eg. (19 the evolution equation for the average
phase difference is obtained, which, after averaging over theegion is closely connected to the broad flat peak of the
initial phase#d, of the input, reads input-output cross correlator which, f@d=0.2, attains a
g value near unity.
We want to emphasize that the addition of a fast switch-
&<QD>: TW(d by da) — . (20 ing dichotomic noise effects the emergence of a locking re-
gime which is never found for the bistable dynamics driven
By definition we identify the MSF of the output calculated by a weak periodic input signal alone. Previous investiga-
with both the dichotomic noise and the periodic input signaltions [5] (corresponding td=0) have shown this kind of
as forced synchronization only for rather large amplitudes
Hence, the addition of a dichotomic noise, realized in prac-
(wey=T(W(hy, Py, Dq))- (21)  tice, for example, through an external driving, should im-
prove the coherence between the response and the periodic
The cross-correlation functions between output and inpuinput even for rather small amplitudes of the input signal.
signal and output and dichotomic noise are redefined in the In Fig. 4 we present Arnold-like tongues calculated for
phase description agod)=(cos¢) and (o\)=(cos(, different values of the amplitude of the dichotomic nose
—¢,)). This can be checked easily using trigonometric iden-As is seen, with increasing amplitud® the amplitudeA
tities as well as definitions from Sec. lll. The MSF expressechecessary to obtain a plateau (@) is significantly low-
as a function of these cross correlators reads ered. This clearly illustrates the synchronization enhancing
role of the additional dichotomic noise. With increasiBg
R optimal noise shifts to smaller values and the minimal
~(az—ap){cos ¢, ~ 4))) necessary for frequency synchronization decreases rapidly
(note the logarithmic scale in Fig).4
Xcos)‘(é More insight into the beneficial role of dichotomic noise
D is gained by inspection of Fig. 5. Here, we compare the
output MSF with the mean frequency of a periodically driven
Here, we also use the fact that the input signal and the di-

1

10

2 A
—{w,)*=(artaz)cosh 5

(22)

A
—(a;+ a2)<cos<p>ssin|-<5 .

chotomic noise are uncorrelatécbs(p, — ¢y))°=0. Note that
a plateau of the stationary MSF can occur only when either 10 |
of the two stationary correlators gains sufficient weight, be it
(cosg)® giving rise to a plateau at low noise intensities, or 10™
(cos(@,— ¢,))° which slows down the growth of the MSF at <>
larger noise intensities. 107 |
The result of our analytic treatment is visualized in Fig. 3.
In panel(a), the output MSF is presented for a weak and 10°
slow signal A=0.03(2=0.001) and a fast dichotomic noise
(y=0.1) and for three different amplitude8. For suffi- 107" e : e e 10’

ciently largeB two distinct regions of synchronization can be

seen. The plateau occurring for small noise intensities corre- D

sponds to a region where the MSF is locked to the frequency FiG. 5. Comparison of the output MSF fop=0.18=0.2
) of the periodic input. Due to our definition of the phase (solid) with a periodically driven two-state system with effective
it corresponds to the regime of noise-induced frequency Syrbarrier AU.4=0.05 (dasheil Other parametersA=0.03, Q
chronization. As can be seen from partb) this locking  =0.001.
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<>
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-4
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107 - by
10 107
D
D
FIG. 6. Output MSF as a function d for B=0.2 and four
values of y=0.1 (solid), 0.01 (dashed} 0.001(long dashey and FIG. 7. Dy for B=0 (long dashey] B=0.2 (dashed andB
0.0001(dot dashell Other parameter€2 =0.001 andA=0.03. =0.215(solid) of the dichotomic noise.

two-state systeni9] with an effective barrierAU =AU of the output. Cross correlations quantified 9.,
—B=0.05.AU is nothing but the barrier related to the rate =d/dt({$qd,) —(Pg){¢,)) can decrease the effective dif-
a, which, for largevy, is the dominating time scale for tran- fusion coefficient. Since the deterministic periodic dynamics
sitions to the input effected lower state. From the plot it canpreserves any initial varianc®, vanishes.

be seen that the behavior of the system with fast switching The effective diffusion coefficient can be rewritten as
dichotomic noise, i.e.,y>(, of large amplitude, i.e.B
~AU, is effectively equivalent to a periodically driven two-
state system with reduced barrier height) 4=AU —B.
Note that a weak signdl<AU (LRT regime in the absence
of dichotomic noise can, for sufficiently lard® change its X(W(hg, by ¢a))]-

character to a strong signal, sinée- AU, in the presence Here, the dichotomic noise is hidden in the modified rate

of dichotomic noise. ; ; :
For largerD a second locking region can be observed. Inv\/(d)"’(ﬁn $q) given by Eq.(15). By insertion of Eq.(15)

this region{w,,)® is synchronized with the dichotomic noise into Eq. (24) one obtains

Dei= () + 7L(eW( S, by, d9))— ()

(249

which is shown by the plateau around the valwg. This A

locking is accompanied by a peak of the cross-correlation ;Deﬁ=<w(,)—(al+ az)sinl—(a)ul—(az+ aj)
function (o\)®. Hence, in this region the output closely fol-

lows the dichotomic noise. The second locking region is less A A
pronounced than the first one. ><cosl'<5 u2+(a2—a1)sim<5)u3, (25

As shown in Fig. 6, forry approachind) (from above
the two locking plateaus converge. When both frequencie§here we have used the abbreviations
match it is not clear in advance which signal the system

should follow. Generally, one can state that for coinciding ur={(o—{(@))cog ¢, — bgq)),

mean frequencies of the dichotomic noise and the peri-

odic input() the system will be locked to the process with u,=((e—(@))cod ¢, — &),

larger amplitude. Forry<Q) the system again follows the

slower signal(see the dot-dashed line in Figl.. 6 Us={(@—{@))cod ¢, — ¢q)). (26)
B. Phase locking Starting from the master equatiqd9), one has to derive

As stated above, the effect of frequency locking characfauations forug, up, and us. This is a cumbersome but

. L . straightforward procedure which, after insertion of
terizes synchronization at the level @feragemotion of the : . : . .
) . . asymptotic stationary values, yields an explicit analytic ex-
input and output phases. It does not necessarily restrict fluc- ! : P !
tuations of the phase difference to small values pression for the effective diffusion coefficient.

Consequently, here we address the question whether fre- In Fig. 7 the result is plotted fop=0.1, 2=0.001, and

qguency locking, detected in the system under consideratiorggr%rﬁzte 22?(2;”%?(130{;?& lggriledI;?g:r?gt“ecrsptrk(l)zactevsvzreTSge d
is also accompanied by an effective phase locking. The me P P

sure we use to trace phase locking is the effective diffusioﬁOr the numerical simulationsee Fig. #)]. By visual in-

coefficientDy for the phase difference already defined in spection the similarity IS obwou_s. Ir_1 the region of noise-
i . induced frequency locking the diffusion coefficient also at-
Eq. (13). Three terms contribute to its general structure

tains a minimum. Hence, frequency locking is accompanied
Deii=Dy+ Dy— Deorr (23 by effective phase locking. In contrast, the second plateau of
the output MSF at larger noise intensity is not shadowed by

with Dy being the diffusion coefficient of the input arfe),  a second minimum of the diffusion coefficient. This, how-
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ever, is explained by the fact that we have defired ¢,  noise we can control—enhance or suppress—the response of
— ¢4 and Dy is not symmetric with respect to exchanging the system to the input. Optimal response is achieved for fast
the roles of the periodic signal and dichotomic noise. switching dichotomic noise with sufficiently large amplitude.

This is obvious since in this case the dichotomic noise effec-

VI. SUMMARY AND CONCLUSIONS tively reduces the original barriekU by the amplitudeB

and changes a small amplitude sigrthRT) into a large

We have investigated a periodically driven bistable sysymplitude signalbeyond LRT.
tem subjected to an additional dichotomic noise. An en-
hancement of noise-induced phase synchronization between

the output and a slow buweak periodic input signal with ACKNOWLEDGMENTS
increasing amplitude of the fast switching dichotomic noise
was proved. This work was supported by the DFG in the framework of
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